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Conversion of pinacol arylboronic esters 3 to aryl
triolborates 5 via transesterification with 1,1,1-tris(hydroxy-
methyl)ethane (4) was established with the advantages of
tolerance to various functional groups. Transesterification was
carried out at 3060 °C in dioxane in the presence of MOH
(M = Na and K) and H2O. High yields were achieved for stable
aryl triolborates 5.

Over the past three decades, it has become increasingly clear
that organoboron compounds are valuable reagents capable of
undergoing many catalytic CC bond formations in organic
synthesis.14 Boronic acids are convenient reagents that are
generally thermally stable and are inert to water and oxygen. The
CB bond of organoboronic acids is totally covalent and inert to
ionic reaction, but nucleophilicity of organic groups on a boron
atom is significantly enhanced by quaternerization by an anionic
ligand. Thus, tetracoordinated ate-complexes are key species that
have been successfully used for addition and coupling reactions
of organoboron compounds, including metal-catalyzed reactions
of organoboronic acids. Recently, air- and water-stable trifluoro-
borates are typical ate-complexes that are advantageous over
boronic acids in preparation and handling of pure and water-
stable crystalline materials.5 However, their metal-catalyzed
bond-forming reactions are very slow in the absence of bases
because of the low nucleophilicity of organic groups due to the
high electronegativity of fluorine. We have reported novel cyclic
triolborates that have exceptionally high levels of stability in air
and water and higher solubility in organic solvents than that
of potassium trifluoroborates.69 High performance of lithium
or potassium triolborates for transmetalation has been demon-
strated in palladium- and copper-catalyzed CC7,8 and CN9

bond-forming reactions and rhodium-catalyzed addition reac-
tions.1012

We have developed methods for the synthesis of aryl
triolborates.6 The azeotropic removal of water upon treatment of
organoboronic acids with the 1,1,1-tris(hydroxymethyl)ethane
(4) gave boronic esters, which were readily converted into
triolborates by treatment with KOH. The corresponding lithium
salts were synthesized by the alkylation of B(OMe)3 or
B(Oi-Pr)3 with RLi, followed by the removal of MeOH or
i-PrOH though ether exchange with triol 4. Recently, synthesis
of pinacol boronic esters has been achieved by palladium-,1315

nickel-,16 and copper-catalyzed17 coupling reactions between
aryl halides or triflates 2 and pinacolborane13 or diborons such as
B2pin2 (pin: pinacol).14,15 More recently, direct borylation of
CH bonds by HBpin or B2pin2 is a convenient, economical, and
environmentally benign process for the synthesis of aromatic
boron compounds.18

Herein, we report a convenient method to directly convert
pinacol boronic esters 3 to aryl triolborates 5 (Scheme 1). Aryl-

boronic esters have been converted to arylboronic acids by
oxidative cleavage or displacement of pinacol by diethanol-
amine or KHF2.19,20 Matteson and co-workers reported the
hydrolysis of 1,2-dicyclohexyl ethanediol (DIECHED) boronic
ester to boronic acids with sodium hydroxide and tris(hydroxy-
methyl)methane derivative in a two-phase system.21 We exam-
ined transesterification of pinacol boronic ester 3a to sodium
triolborate 5a. There is a strong accelerating effect of water
(Entries 13, Table 1). The reaction required the presence of
3 equivalents of water and proceeded smoothly in dioxane but
was very slow in other solvents such as THF and DME (Entries
5, 7, and 8). Finally, the reaction took place smoothly at 30 °C
in the presence of 1.0 equivalent of NaOH with 84% yield
(Entry 5).

We tested the generality of this conversion of pinacol
boronic esters to sodium aryl triolborates (Table 2). High yields
were easily achieved in most aromatic boronic esters possessing
halogens and ester substituents at para and meta carbons (Entries
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Entry Solvent NaOH/equiv Temp/°C H2O/equiv Yield/%b

1 dioxane 0.9 60 3 72
2 dioxane 0.9 60 1 27
3 dioxane 0.9 60 none trace
4 dioxane 1.0 60 3 76
5 dioxane 1.0 30 3 84
6 dioxane 1.0 90 3 trace
7 THF 1.0 30 3 48
8 DME 1.0 30 3 46
aReaction conditions: 2-(3,5-dichlorophenyl)-4,4,5,5-tetra-
methyl-1,3,2-dioxaborolane (3a: 1.0mmol), triol, and NaOH
in solvent (5mL) was stirred for 16 h. bYields of the isolated
product.
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14). Five-membered heteroarenes22 such as thiophene, furan,
pyrrole, and pyrazole provided triolborates 5 in high yields
(Entries 511). Yields exceeding 70% were achieved when
using pinacol esters having either electron-donating or electron-
withdrawing substituents at the para and meta positions (Entries
1216).

The selective Ir-catalyzed borylation of pyrene with B2pin2
produced 2-pyrenylboronate 3q.23 2-Pyrenylboronate 3q was
converted to potassium triolborate 5q at 60 °C in the presence of
0.9 equivalent of KOH with 89% yield (eq 1). As reported for
arene CH borylation, coupling at CH bonds located ortho
to substituents was very slow due to steric hindrance.
3,5-Dimethyl-4-isoxazolylboronic ester 3r, which was synthe-
sized by palladium-catalyzed cross-coupling reaction between
4-iodo-3,5-dimethylisoxazole and pinacolborane,24 was effi-
ciently converted to triolborate (eq 2). A direct method to
convert 1,3-dichlorobenzene (1a) to 3,5-dichlorophenyl triolbo-
rates 5a is shown in eq 3. The formation of 5a from 1a was
achieved with 69% yield.
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The cross-coupling reactions of arylboronic esters has often
suffered from long reaction time23b or low yields due to
competitive hydrolytic BC bond cleavage.25 Triolborates
reacted quantitatively with bromoarenes in DMF (Scheme 2).
The cross-coupling reaction of potassium 2-pyrenyl triolborate
(5q) with methyl 4-bromobenzoate was completed at room
temperature in the presence of Pd(OAc)2 in aqueous DMF.6 The
presence of CuI led to an increase in the coupling yield with
sodium 2-pyrrolyl triolborate (5j).7

In conclusion, we have described a simple and practical
synthetic method to convert pinacol boronic esters to triolbo-
rates.26 As such complexes are key species in various metal-
catalyzed CC bond-forming reactions, studies toward their
application to other addition and coupling reactions are in
progress.
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